Multi Classification ERT Flow Pattern Recognition Method Based on Deep Learning

نویسندگان

چکیده

Abstract Electrical resistance tomography (ERT) is the frontier technology of modern industrial detection, in which flow pattern an important index two-phase detection. Affected by many factors, ERT recognition difficult. In this paper, method based on deep learning designed order to obtain real situation pipeline practical application. The original measured voltage transformed from one-dimensional data information two-dimensional dot matrix pseudo image coding method. According characteristics, patterns are divided into 27 categories, and then databases with different scales established time domain frequency domain. Convolutional neural network used construct model learning, experiments verify its performance. results show that average accuracy each algorithm can reach 98.74%, 14 types 100%. This achieve high-precision task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Radar Signal Recognition Method based on Deep Learning

Radar signal recognition is of great importance in the field of electronic intelligence reconnaissance. To deal with the problem of parameter complexity and agility of multi-function radars in radar signal recognition, a new model called radar signal recognition based on deep restricted Boltzmann machine (RSRDRBM) is proposed to extract the feature parameters and recognize the radar emitter. Th...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Deep Learning For Sequential Pattern Recognition

Faculty of Electrical Engineering and Information Technology Department of Geometric Optimization and Machine Learning

متن کامل

Deep learning for multi-label scene classification

Scene classification is an important topic in computer vision. For similar weather conditions, there are some obstacles for extracting features from outdoor images. In this thesis, I present a novel approach to classify cloudy and sunny weather images. Inspired by recent study of a deep convolutional neural network and the spatial pyramid matching, I generate a model based on the ImageNet datas...

متن کامل

Deep Learning for Multi-label Classification

In multi-label classification, the main focus has been to develop ways of learning the underlying dependencies between labels, and to take advantage of this at classification time. Developing better feature-space representations has been predominantly employed to reduce complexity, e.g., by eliminating non-helpful feature attributes from the input space prior to (or during) training. This is an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2181/1/012010